Measurement of pion PDFs by xFitter

S. Glazov (DESY), 1 June 2021

xFitter project

- xFitter is an open source QCD analysis tool.
- Last release, 2.0.1 "Old Fashioned": updates and bug fixes for 2.0.0 "Frozen Frog".
- In development on https://gitlab.cern.ch/fitters/xfitter, aiming modular more general QCD fit platform.
- **xFitter** provides interface to many data samples, with complex correlation model, fast χ^2 computation, fast evolution using QCDNUM/APFEL, build-in computation of DIS cross sections and interfaces to APPLGRID and FastNLO, and other features such as different PDF parameterisations and regularisation methods.
- xFitter has interfaces to a number of external packages: APFEL, APFEL++, HELL, HATHOR.

Pion determination PDFs: motivation

- Many developments for proton PDFs, to simplify (N)NLO fits: APPLGRID, FastNLO.
- PDFs of the pion are theoretically more simple vs proton.
- New experiments are in planning to improve gluon density determination.
- Natural extension of xFitter fitting machinery, playground for new xFitter development.

arXiv:2002.02902

Data samples

Experiment	P _{lab} GeV	Reaction	$N_{ m points}$	Normalisation uncertainty
E615	252		140	15.%
NA10	194	π^- 74 $W \rightarrow \mu^+ \mu^- X$	67	6.4%
NA10	286		73	6.4%
WA70	280	$\pi^{\pm}p o \gamma X$	99	32%

- DY and direct photon data from E615 (PRD 39 (1989) 92),
 NA10 (Z.Phys. C 28 (1985), revised) and WA70 (Z.Phys. C 37 (1988)) experiments.
- Systematic uncertainties are treated using nuisance parameters.

$$\chi^{2} := \sum_{i} \frac{\left(d_{i} - t_{i}[1 - \sum_{\alpha} \gamma_{i\alpha} b_{\alpha}]\right)^{2}}{\left(\delta_{i}^{\text{syst}}\right)^{2} + \left(\sqrt{\frac{\tilde{t}_{i}}{d_{i}}} \delta_{i}^{\text{stat}}\right)^{2}} + \sum_{\alpha} b_{\alpha}^{2}$$

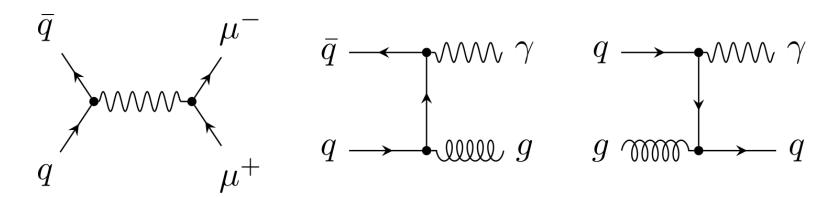
Fit settings for π^- fit

Evolution starting scale $Q_0^2 = 1.9 \text{ GeV}^2$, just under the charm threshold. Assumes $\bar{u} = d$ as well flavour symmetric sea: $u = \bar{d} = s = \bar{s}$. The resulting fitted PDFs are

$$v := d_v - u_v = (d - \bar{d}) - (u - \bar{u}) = 2(d - u) = 2d_v,$$

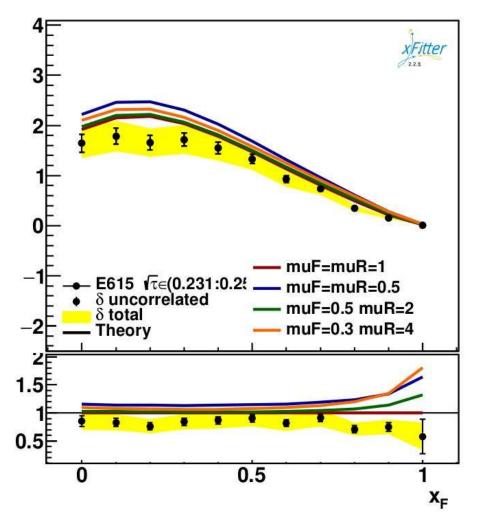
 $S := 2u + 2\bar{d} + s + \bar{s} = 6u,$
 $g := g,$

Standard parameterisation form


$$xv(x) = A_v x^{B_v} (1 - x)^{C_v} (1 + D_v x^{\alpha}),$$

$$xS(x) = A_S x^{B_S} (1 - x)^{C_S} / B(B_S + 1, C_S + 1),$$

$$xg(x) = A_g (C_g + 1)(1 - x)^{C_g},$$

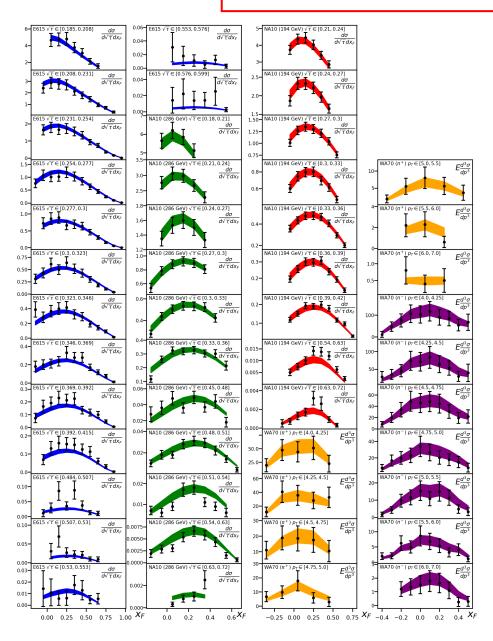

with A_v and A_g determined by sum rules. $\alpha = 5/2$ with non-vanishing D_v improves the quality of the fit by $\Delta \chi^2 = 7$.

Theory prediction

- NLO predictions using MCFM via APPLGRID.
- $\mu_R = \mu_F = m_{\ell\ell}$ for DY data, $\mu_R = \mu_F = p_T(\gamma)$ for prompt photon production.
- ₇₄W target modeled using nCTEQ15 PDF set.
- Photon fragmentation contribution not included, uncertainty assigned based on MCFM for *pp* with and without fragmentation.

Uncertainties used in the fit

Uncertainties included in the fit as nuisance parameters:

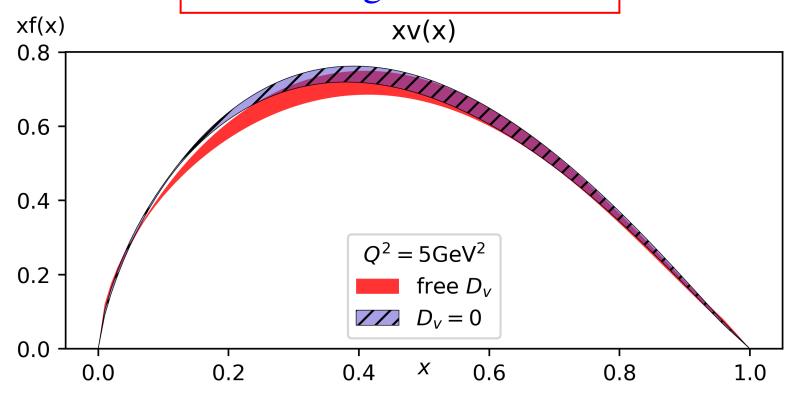

- Data set normalisation uncertainties.
- $\alpha_S = 0.118 \pm 0.001$ variation.
- PDF eigenvectors of nCTEQ15 nuclear PDF set.
- Fragmentation correction (as global normalisation)

Uncertainties treated by "offset" fits:

- μ_R and μ_F variation by factor 0.5 and 2.
- Starting scale variation $Q_0^2 = 1.9 \pm 0.4 \text{ GeV}^2$.

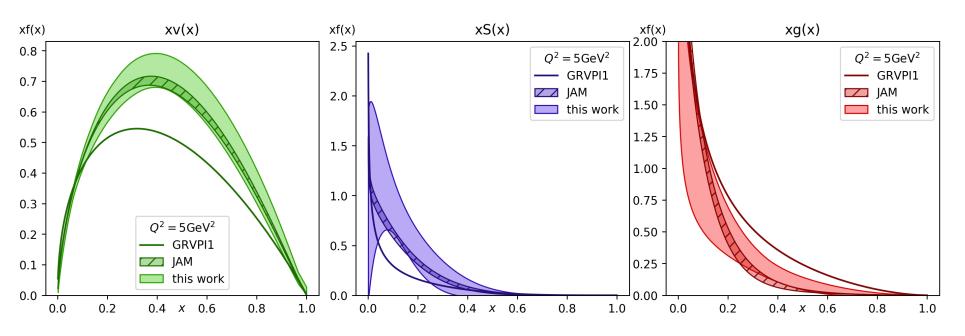
 \rightarrow sizable vs experimental errors scale uncertainties, for large x_F in particular.

Fit results: data description

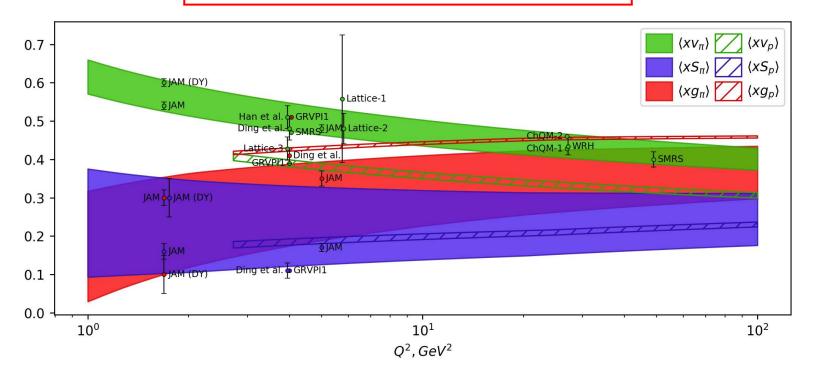

- $\chi^2/dof = 437/372$ (for the fit with free D_v), reasonable description of all data sets.
- Theory predictions include correlated shifts.

Fit results: data description

Experiment	Normalization	Normalization	$\chi^2/N_{ m points}$	
Experiment	uncertainty	factor		
E615	15 %	1.160 ± 0.020	206/140	
NA10 (194GeV)	6.4%	0.997 ± 0.014	107/67	
NA10 (286GeV)	6.4%	0.927 ± 0.013	95/73	
WA70	32%	0.737 ± 0.012	64/99	


- Significant adjustment of E615 normalisation, but it is within experimental uncertainty.
- Large contribution to χ^2 from several data points, studies with removal of them and corresponding regions do not show significant variations of PDFs.

Valence high *x* behaviour


- Parameterisation scan found $\Delta \chi^2 = 7$ improvement for one extra parameter: $A_v x^{B_v} (1-x)^{C_v} (1+D_v x^{5/2})$.
- Both "extended" and "minimal" parameterisations are consistent at high x. For minimal parameterisation $C_v = 0.95 \pm 0.03$ (no scale variation included): behaviour near x = 1 is linear in (1 x).

Comparison to other determinations.

- Agreement with determination of JAM (arXiv:1804.01965).
- Valence distribution is reasonably well constrained, difference of JAM/xFitter vs GRVM1.
- Gluon and sea distributions are poorly constrained.

PDF momentum fractions

- Compute momentum fractions carried by the gluon, sea- and valence quarks (solid bands). Compare to other estimations.
- Compare with the proton fractions, using NNPDF3.1 NLO set (dashed bands).
- Larger valence fraction and smaller gluon while the sea is comparable.

Summary and outline

- xFitter determination of pion PDFs at NLO using MCFM/APPLGRID for predictions.
- Good description of the data, data are self-consistent.
- Large uncertainties for the gluon distribution.
- Valence quarks are reasonably well constrained, NLO fits prefer PDFs with large momentum fraction carried by the valence quarks.
- Theoretical uncertainties estimated in the fit using scale variations; they are sizable at high x_F in particular. Fits using NNLO and/or threshold resummation corrections would be interesting.

The fit setup, data, predictions (APPLGRIDs) and PDFs are public: data, fit, xFitterPI_NLO_EIG, xFitterPI_NLO_VAR.

Momentum fraction estimates comparison

	$\langle xv \rangle$	$\langle xS \rangle$	$\langle xg \rangle$	Q^2 (GeV ²)
JAM (arXiv:1804.01965)	0.54 ± 0.01	0.16 ± 0.02	0.30 ± 0.02	1.69
JAM (DY)	0.60 ± 0.01	0.30 ± 0.05	0.10 ± 0.05	1.69
this work	0.55 ± 0.06	0.26 ± 0.15	0.19 ± 0.16	1.69
Lattice-3 (arXiv:1507.04936)	0.428 ± 0.030			4
SMRS (PRD45, 2349 (1992))	0.47			4
Han et al. (arXiv:1809.01549)	0.51 ± 0.03			4
GRVPI1 (ZPC53, 651 (1992))	0.39	0.11	0.51	4
Ding et al. (arXiv:1905.05208)	0.48 ± 0.03	0.11 ± 0.02	0.41 ± 0.02	4
this work	0.50 ± 0.05	0.25 ± 0.13	0.25 ± 0.13	4
JAM	0.48 ± 0.01	0.17 ± 0.01	0.35 ± 0.02	5
this work	0.49 ± 0.05	0.25 ± 0.12	0.26 ± 0.13	5
Lattice-1 (arXiv:hep-lat/9703014)	0.558 ± 0.166			5.76
Lattice-2 (arXiv:hep-lat/0303015)	0.48 ± 0.04			5.76
this work	0.48 ± 0.05	0.25 ± 0.12	0.27 ± 0.13	5.76
WRH (arXiv:nucl-ex/0509012)	0.434 ± 0.022			27
ChQM-1 (arXiv:1205.4156)	0.428			27
ChQM-2 (arXiv:1710.09529)	0.46			27
this work	0.42 ± 0.04	0.25 ± 0.10	0.32 ± 0.10	27
SMRS	0.49 ± 0.02			49
this work	0.41 ± 0.04	0.25 ± 0.09	0.34 ± 0.09	49