

Entanglement and decoherence in cosmology and in analogue gravity experiments Talk CAT 2021

25 mai 2021

Amaury Micheli

Supervisors: Jerome Martin, IAP (Paris); Scott Robertson, IJCLab (Orsay)

Classical inhomogeneous / time varying background

Classical inhomogeneous / time varying background

Quantum field $\hat{\chi}$ initially in vacuum

Classical inhomogeneous / time varying background

Schwarzchild black-hole metric $g_{\mu\nu}^{BH}$

Quantum field $\hat{\chi}$ initially in vacuum

Classical inhomogeneous / time varying background

Schwarzchild black-hole metric $g_{\mu\nu}^{BH}$

Quantum field $\hat{\chi}$ initially in vacuum

Thermal radiation of particles

Classical inhomogeneous / time varying background

Schwarzchild black-hole metric $g_{\mu\nu}^{BH}$

Exponentially expanding Universe metric $g_{\mu\nu}^{FLRW}$

Quantum field $\hat{\chi}$ initially in vacuum

Thermal radiation of particles

Classical inhomogeneous / time varying background

Schwarzchild black-hole metric $g_{\mu\nu}^{BH}$

Exponentially expanding Universe metric $g_{\mu\nu}^{FLRW}$

Quantum field $\hat{\chi}$ initially in vacuum

Thermal radiation of particles

Exponential enhancement of fluctuations

Classical inhomogeneous / time varying background

Schwarzchild black-hole metric $g^{BH}_{\mu\nu}$

Exponentially expanding Universe metric $g^{FLRW}_{\mu\nu}$

Quantum field $\hat{\chi}$ initially in vacuum

Thermal radiation of particles

Exponential enhancement of fluctuations

Origin of Cosmic Microwave

Background (CMB)

anisotropies

Classical inhomogeneous / time varying background

Schwarzchild black-hole metric $g_{\mu\nu}^{BH}$

Exponentially expanding Universe metric $g^{FLRW}_{\mu\nu}$

Oscillating classical field $\bar{\phi}(t)$

Quantum field $\hat{\chi}$ initially in vacuum

Thermal radiation of particles

Exponential enhancement of fluctuations Origin of Cosmic Microwave Background (CMB) anisotropies

Classical inhomogeneous / time varying background

Schwarzchild black-hole metric $g_{\mu\nu}^{BH}$

Exponentially expanding Universe metric $g^{FLRW}_{\mu\nu}$

Oscillating classical field $\bar{\phi}(t)$

Quantum field $\hat{\chi}$ initially in vacuum

Thermal radiation of particles

Exponential enhancement of fluctuations Origin of Cosmic Microwave Background (CMB) anisotropies

Creation of pairs of particles

Classical inhomogeneous / time varying background

Schwarzchild black-hole metric $g^{BH}_{\mu\nu}$

Exponentially expanding Universe metric $g_{\mu\nu}^{FLRW}$

Oscillating classical field $\bar{\phi}(t)$

Quantum field $\hat{\chi}$ initially in vacuum

Thermal radiation of particles

Exponential enhancement of fluctuations Origin of Cosmic Microwave Background (CMB) anisotropies

Creation of pairs of particles

Part of matter creation in early
universe

INTRODUCTION: SYNTHESIS

Take home message 1

Quantum Field Theory in curved space-time leads to exciting predictions that are expected to play a crucial role on cosmological scales.

INTRODUCTION: SYNTHESIS

Take home message 1

Quantum Field Theory in curved space-time leads to exciting predictions that are expected to play a crucial role on cosmological scales.

but... can we prove these predictions?

 \rightarrow Hawking radiation for a stellar mass black-hole :

→ Hawking radiation for a stellar mass black-hole :

$$T_H = \frac{M_{\odot}}{M} 10^{-7} K \ll T_{\rm CMB} \approx 3K$$

→ Hawking radiation for a stellar mass black-hole :

$$T_H = \frac{M_{\odot}}{M} 10^{-7} K \ll T_{\rm CMB} \approx 3K$$

Not observable.

→ Hawking radiation for a stellar mass black-hole :

$$T_H = \frac{M_{\odot}}{M} \, 10^{-7} K \ll T_{\rm CMB} \approx 3K$$

Not observable.

→ CMB anisotropies gives indirect proof...

→ Hawking radiation for a stellar mass black-hole :

$$T_H = \frac{M_{\odot}}{M} \, 10^{-7} K \ll T_{\rm CMB} \approx 3K$$

Not observable.

ightarrow CMB anisotropies gives indirect proof... but quantum $\hat{\phi} \to \text{stochastic } \phi_{\text{st.}}$ lead to the same observable predictions!

→ Hawking radiation for a stellar mass black-hole :

$$T_H = \frac{M_\odot}{M} \, 10^{-7} K \ll T_{\rm CMB} \approx 3 K$$

Not observable.

ightarrow CMB anisotropies gives indirect proof... but quantum $\hat{\phi} \to \text{stochastic} \ \phi_{\text{st.}}$ lead to the same observable predictions! Direct proof of quantum origin?

→ Hawking radiation for a stellar mass black-hole :

$$T_H = \frac{M_\odot}{M} \, 10^{-7} K \ll T_{\rm CMB} \approx 3 K$$

Not observable.

ightarrow CMB anisotropies gives indirect proof... but quantum $\hat{\phi} \rightarrow$ stochastic $\phi_{\rm st.}$ lead to the same observable predictions! Direct proof of quantum origin? **Believed to be impossible.**

→ Hawking radiation for a stellar mass black-hole :

$$T_H = \frac{M_{\odot}}{M} \, 10^{-7} K \ll T_{\rm CMB} \approx 3K$$

Not observable.

ightarrow CMB anisotropies gives indirect proof... but quantum $\hat{\phi} \rightarrow$ stochastic $\phi_{\rm st.}$ lead to the same observable predictions! Direct proof of quantum origin? Believed to be impossible.

Take home message 2

Consensus on the difficulty of proving the quantum origin of Quantum Field Theory in curved space-time predictions in astrophysical and cosmological contexts.

What can we do?

What can we do?
Two strategies / axis of my PhD:

What can we do? Two strategies / axis of my PhD:

Insist! Study **same systems** with new tools e.g. study inflationary perturbations using quantum information tools.

What can we do? Two strategies / axis of my PhD:

Insist! Study **same systems** with new tools e.g. study inflationary perturbations using quantum information tools.

Study laboratory systems where we can make the same predictions: **Analogue gravity**.

Good laboratory system analogue to classical background + quantum field?

Good laboratory system analogue to classical background + quantum field?

Trapped cold atoms!

Good laboratory system analogue to classical background + quantum field?

Trapped cold atoms!

Bose-Einstein Condensate (BEC) well-described by a classical field $\bar{\phi}$

Good laboratory system analogue to classical background + quantum field?

Trapped cold atoms!

Bose-Einstein Condensate (BEC) well-described by a classical field $\bar{\phi}$

Perturbations of BEC well-described by a quantum field $\hat{\delta\phi}$

Good laboratory system analogue to classical background + quantum field?

Trapped cold atoms!

Bose-Einstein Condensate (BEC) well-described by a classical field $\bar{\phi}$

Perturbations of BEC well-described by a quantum field $\hat{\delta \phi}$

For suitable modulation of trap size : $\bar{\phi}(t)$ leads to the same equations as preheating, **production of pairs of quasi-particles** (phonons) in resonant modes $k_{\rm res}$!

ANALOGUE GRAVITY: SYNTHESIS

Take home message 3

Analogue gravity systems: non-gravitational laboratory systems but modeled by the same equations, and hence leading to the same formal predictions, as gravitational systems.

ANALOGUE GRAVITY: SYNTHESIS

Take home message 3

Analogue gravity systems: non-gravitational laboratory systems but modeled by the same equations, and hence leading to the same formal predictions, as gravitational systems.

Same questions of observability, treated with the same formalism

DEFINING AND TRACING QUANTUMNESS

Quantumness of a state of a system = Quantumness of correlations of subsystems for this state.

DEFINING AND TRACING QUANTUMNESS

Quantumness of a state of a system = Quantumness of correlations of subsystems for this state.

Several a priori inequivalent criteria : **several probes for cosmology**.

DEFINING AND TRACING QUANTUMNESS

Quantumness of a state of a system = Quantumness of correlations of subsystems for this state.

Several a priori inequivalent criteria : **several probes for cosmology**.

Illustration using (non-)separability of the state of subsystems.

 $\rightarrow \ \, \text{Appropriate subsystems for (analogue) preheating/inflation?}$

 \rightarrow Appropriate subsystems for (analogue) preheating/inflation? Homogeneous situations : Fluctuations in direction $\pm \mathbf{k}$ ($\pm \mathbf{k}_{res}$ for preheating, any for inflation)

- \rightarrow Appropriate subsystems for (analogue) preheating/inflation? Homogeneous situations : Fluctuations in direction $\pm \mathbf{k}$ ($\pm \mathbf{k}_{res}$ for preheating, any for inflation)
- ightarrow Described by $\left\{ egin{array}{ll} n_{\pm {f k}} &= \left\langle \hat{a}_{\pm {f k}}^{\dagger} \hat{a}_{\pm {f k}}
 ight
 angle & {
 m number \ of \ particles.} \\ c_{{f k}} &= \left\langle \hat{a}_{{f k}} \hat{a}_{-{f k}}
 ight
 angle & {
 m correlation \ of \ modes.} \end{array}
 ight.$

- \rightarrow Appropriate subsystems for (analogue) preheating/inflation? Homogeneous situations : Fluctuations in direction $\pm \mathbf{k}$ ($\pm \mathbf{k}_{res}$ for preheating, any for inflation)
- $\rightarrow \text{ Described by } \left\{ \begin{array}{ll} n_{\pm \mathbf{k}} &= \left\langle \hat{a}_{\pm \mathbf{k}}^{\dagger} \hat{a}_{\pm \mathbf{k}} \right\rangle & \text{number of particles.} \\ c_{\mathbf{k}} &= \left\langle \hat{a}_{\mathbf{k}} \hat{a}_{-\mathbf{k}} \right\rangle & \text{correlation of modes.} \end{array} \right.$
- → Quantumness criterion?

- \rightarrow Appropriate subsystems for (analogue) preheating/inflation? Homogeneous situations : Fluctuations in direction $\pm \mathbf{k}$ ($\pm \mathbf{k}_{res}$ for preheating, any for inflation)
- $\rightarrow \text{ Described by } \left\{ \begin{array}{ll} n_{\pm \mathbf{k}} &= \left\langle \hat{a}_{\pm \mathbf{k}}^{\dagger} \hat{a}_{\pm \mathbf{k}} \right\rangle & \text{number of particles.} \\ c_{\mathbf{k}} &= \left\langle \hat{a}_{\mathbf{k}} \hat{a}_{-\mathbf{k}} \right\rangle & \text{correlation of modes.} \end{array} \right.$
- → Quantumness criterion?

Classical case

$$n_{\mathbf{k}} \ge |c_{\mathbf{k}}|$$

Quantum case

- → Appropriate subsystems for (analogue) preheating/inflation? Homogeneous situations: Fluctuations in direction $\pm \mathbf{k}$ $(\pm \mathbf{k}_{res})$ for preheating, any for inflation)
- ightarrow Described by $\left\{ \begin{array}{ll} n_{\pm \mathbf{k}} &= \left\langle \hat{a}_{\pm \mathbf{k}}^{\dagger} \hat{a}_{\pm \mathbf{k}} \right\rangle & \text{number of particles.} \\ c_{\mathbf{k}} &= \left\langle \hat{a}_{\mathbf{k}} \hat{a}_{-\mathbf{k}} \right\rangle & \text{correlation of modes.} \end{array} \right.$
- → Ouantumness criterion?

Classical case

$$n_{\mathbf{k}} \geq |c_{\mathbf{k}}|$$

$$\left| \frac{\text{Quantum case}}{\sqrt{n_{\mathbf{k}} \left(n_{\mathbf{k}} + 1 \right)}} \ge |c_{\mathbf{k}}| \right.$$

- \rightarrow Appropriate subsystems for (analogue) preheating/inflation? Homogeneous situations : Fluctuations in direction $\pm \mathbf{k}$ ($\pm \mathbf{k}_{res}$ for preheating, any for inflation)
- $\rightarrow \text{ Described by } \left\{ \begin{array}{ll} n_{\pm \mathbf{k}} &= \left\langle \hat{a}_{\pm \mathbf{k}}^{\dagger} \hat{a}_{\pm \mathbf{k}} \right\rangle & \text{number of particles.} \\ c_{\mathbf{k}} &= \left\langle \hat{a}_{\mathbf{k}} \hat{a}_{-\mathbf{k}} \right\rangle & \text{correlation of modes.} \end{array} \right.$
- → Quantumness criterion?

Classical case

$$n_{\mathbf{k}} \geq |c_{\mathbf{k}}|$$

| Quantum case $\sqrt{n_{\mathbf{k}} (n_{\mathbf{k}} + 1)} \ge |c_{\mathbf{k}}|$

State non-separable i.e. "quantum" whenever:

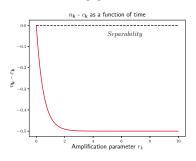
$$0>n_{\mathbf{k}}-|c_{\mathbf{k}}|\geq -\tfrac{1}{2}$$

- → Appropriate subsystems for (analogue) preheating/inflation? Homogeneous situations: Fluctuations in direction $+\mathbf{k}$ $(\pm \mathbf{k}_{res})$ for preheating, any for inflation)
- ightarrow Described by $\left\{ \begin{array}{ll} n_{\pm \mathbf{k}} &= \left\langle \hat{a}_{\pm \mathbf{k}}^{\dagger} \hat{a}_{\pm \mathbf{k}} \right\rangle & \text{number of particles.} \\ c_{\mathbf{k}} &= \left\langle \hat{a}_{\mathbf{k}} \hat{a}_{-\mathbf{k}} \right\rangle & \text{correlation of modes.} \end{array} \right.$
- → Quantumness criterion?

Classical case

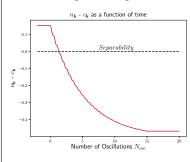
$$n_{\mathbf{k}} \ge |c_{\mathbf{k}}|$$

$$\left| \frac{\text{Quantum case}}{\sqrt{n_{\mathbf{k}} \left(n_{\mathbf{k}} + 1 \right)}} \ge |c_{\mathbf{k}}| \right.$$

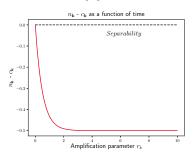

State non-separable i.e. "quantum" whenever:

$$0 > n_{\mathbf{k}} - |c_{\mathbf{k}}| \ge -\frac{1}{2}$$

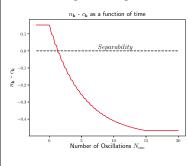
NB: Due to the lower bound detection requires high precision on $n_{\mathbf{k}}$ and $c_{\mathbf{k}}$, and gets harder as $n_{\mathbf{k}}$ increases


Inflationnary perturbations Preheating analogue

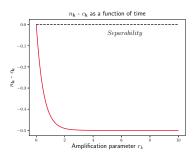
Inflationnary perturbations



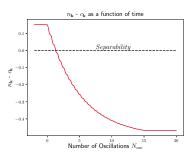
Inflationnary perturbations



Inflationnary perturbations

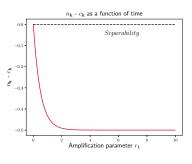


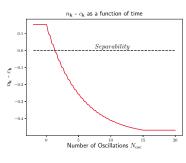
Preheating analogue



Evolution generically leads to a non-separable i.e. "quantum" state!

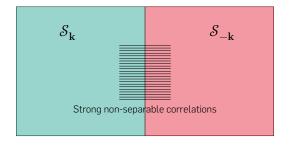
Inflationnary perturbations

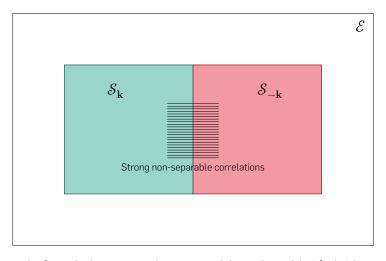

Preheating analogue

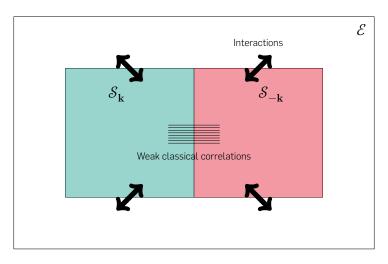

Evolution generically leads to a non-separable i.e. "quantum" state!

Oversimplification?

Inflationnary perturbations




Preheating analogue

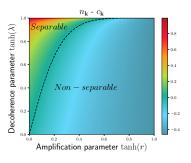

Evolution generically leads to a non-separable i.e. "quantum" state!

Oversimplification? Yes e.g. [Jaskula et al., 2012] report having measure $n_{\bf k}>c_{\bf k}$, need to include non-linearities / interactions in the model.

In fact \mathcal{S}_k has an environment \mathcal{E} (e.g. $\mathcal{S}_{k'}$ with $k'\neq k$)

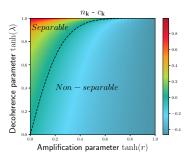
Interactions \mathcal{S}_k / \mathcal{E} destroy correlations $\mathcal{S}_{\mathbf{k}}$ / $\mathcal{S}_{-\mathbf{k}}$: decoherence

Take home message 4


Quantum features of a state are fragile against interactions with extra degrees of freedom.

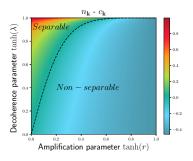
EFFECT OF DECOHERENCE: CURRENT WORK

Inflationnary perturbations

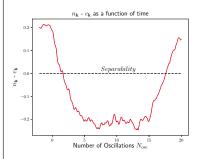

EFFECT OF DECOHERENCE: CURRENT WORK

Inflationnary perturbations

EFFECT OF DECOHERENCE : CURRENT WORK

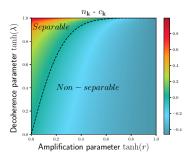

Inflationnary perturbations

Level of decoherence λ **model-dependent**: might still be quantumness to see.

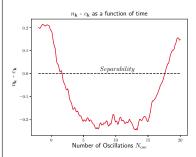

EFFECT OF DECOHERENCE: CURRENT WORK

Inflationnary perturbations

Level of decoherence λ **model-dependent**: might still be quantumness to see.


Preheating analogue

Decoherence from ab-initio numerical simulations of BEC + perturbations : confirm lost of entanglement.


EFFECT OF DECOHERENCE: CURRENT WORK

Inflationnary perturbations

Level of decoherence λ **model-dependent** : might still be quantumness to see.

Preheating analogue

Goal: Predict dependence on physical parameters to optimize experimental observability.

Thank you for your attention!

Busch, X., Parentani, R., and Robertson, S. (2014).

Quantum entanglement due to a modulated dynamical casimir effect.

Phys. Rev. A, 89:063606.

Campo, D. and Parentani, R. (2006).
Inflationary spectra and violations of bell inequalities.
Phys. Rev. D, 74:025001.

Campo, D. and Parentani, R. (2008).

Decoherence and entropy of primordial fluctuations. i. formalism and interpretation.

Phys. Rev. D, 78:065044.

Collaboration, P.
Planck 2015 results. xiii. cosmological parameters.

Squeezed quantum states of relic gravitons and primordial density fluctuations.

Phys. Rev. D, 42:3413-3421.

Jaskula, J.-C., Partridge, G. B., Bonneau, M., Lopes, R., Ruaudel, J., Boiron, D., and Westbrook, C. I. (2012). Acoustic analog to the dynamical casimir effect in a bose-einstein condensate.

Phys. Rev. Lett., 109:220401.

Kiefer, C., Polarski, D., and Starobinsky, A. A. (1998).

Quantum-to-classical transition for fluctuations in the early universe.

International Journal of Modern Physics D, 07(03):455-462.

Martin, J. and Vennin, V.
Quantum discord of cosmic inflation: Can we show that cmb anisotropies are of quantum-mechanical origin?

Martin, J. and Vennin, V. (2016).
Leggett-Garg Inequalities for Squeezed States.
Phys. Rev. A, 94(5):052135.

Martin, J. and Vennin, V. (2018). Observational constraints on quantum decoherence during inflation. JCAP. 05:063.

Polarski, D. and Starobinsky, A. A. (1996).
Semiclassicality and decoherence of cosmological perturbations.

Classical and Quantum Gravity, 13(3):377-391.

Robertson, S., Michel, F., and Parentani, R. (2018).

Nonlinearities induced by parametric resonance in effectively 1d atomic bose condensates.

Phys. Rev. D, 98:056003.

Robertson, S. J. (2011). Hawking Radiation in Dispersive Media. PhD thesis, St. Andrews U., Phys. Astron.