

Measurement of $cos(\phi)$ and $cos(2\phi)$ asymmetries with CLAS12 experiment

Mylene Caudron

IJCLab

May 3, 2021

Introduction

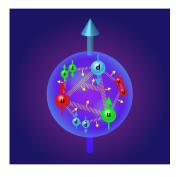
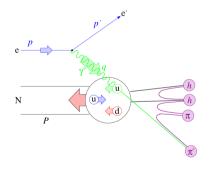


Figure: The inside of a proton


- Proton made of 3 valence quarks
- Each quark has a spin and a momentum
- Study of spin-orbit correlation
 - \rightarrow Intrinsic motion of quarks inside the proton

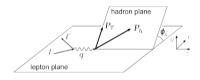
Introduction

- Transverse Momentum Dependance (TMD) distribution functions describe the azimuthal distribution of partons inside nucleons.
- Boer-Mulders function : generates $cos(2\phi)$ asymmetry in unpolarized leptoproduction, coupled to Collins fragmentation function
 - \rightarrow describe the correlation between the transverse spin and momentum of a quark ejected from an unpolarized target in Semi-Inclusive Deep Inelastic Scattering (SIDIS).
- Goal of this thesis : Measurement of the Boer-Mulders function with CLAS12 experiment
- Extract the $cos(\phi)$ $cos(2\phi)$ asymmetries in unpolarized leptoproduction

Semi Inclusive Deep Inelastic Scattering

We consider the SIDIS reaction : $I(I) + p(P) \rightarrow I'(I') + h(Ph) + X(PX)$

Electron scattered from a proton


At high enough Q^2 : scatter from a quark

SIDIS : a hadron is detected with the scattered electron

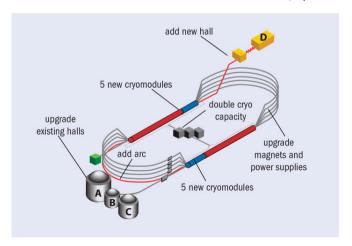
ightarrow Here the hadron is a π^+

Semi Inclusive Deep Inelastic Scattering

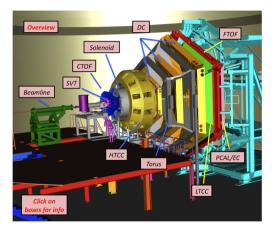
We consider the SIDIS reaction : $I(I) + p(P) \rightarrow I'(I') + h(Ph) + X(PX)$

$$x_B = rac{Q^2}{2.p.q}$$
 : fraction of the proton momentum carried by the struck quark

$$Q^2 = (I^{'} - I)^2$$
: 4 momentum transfer


$$z=rac{E_{\pi}}{
u}$$
 : fractional energy transfered to hadron

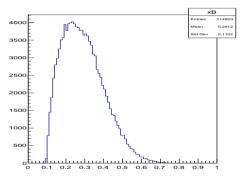
$$P_t = \frac{|\vec{p_h} \times \vec{q}|}{|\vec{q}|}$$
: transverse momentum of hadron

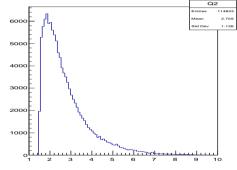

 ϕ : azimuthal angle between lepton scattering plane and hadron production plane

Jefferson Laboratory

Jefferson Laboratory in Newport News (VA)
Continuous Electron Beam Accelerator Facility (CEBAF)

CLAS12 Detector

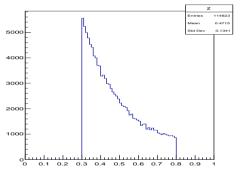


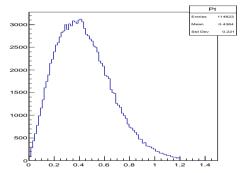

CLAS12 detector (CEBAF Large Acceptance Spectrometer 12 GeV)

- Cherenkov counters
- EM Calorimeter
- Time of Flight counters
- Tracking
- \rightarrow Electron beam 10.6 GeV
- → Unpolarized proton target
- \rightarrow Runs : Fall 2018 and Spring 2019

Kinematic Variables

Kinematic variable for the scattered lepton


$$x_B = \frac{Q^2}{2.p.q}$$

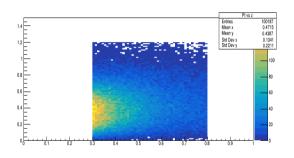

$$Q^2 = (I' - I)^2$$

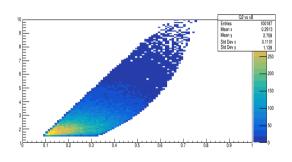
 $Q^2 > 1.5 Gev^2$

$$Q^2 > 1.5 \, Gev$$

Kinematic variables

Kinematic variables for the hadron

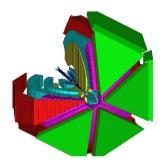



$$z=\frac{E_{\pi}}{\nu}$$

$$P_T = rac{|ec{p_h} imesec{q}|}{|ec{q}|} \ P_T < 1.2 extit{GeV}$$

Kinematic variables

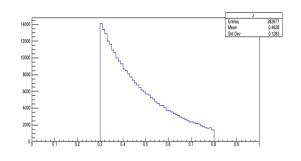
Correlation between the variables

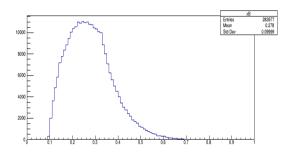

 \rightarrow Strong correlation between xB and Q2 and between Pt and z

Objectives of the analysis

• Extract $cos(\phi)$ and $cos(2\phi)$ with the asymmetry defined in experiments

$$<\cos(\phi)>=rac{\sum\cos(\phi)}{N}$$

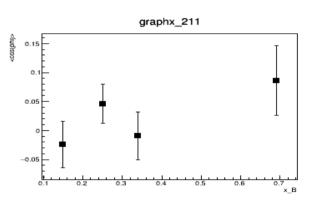

- Apply corrections (acceptance, radiative...)
 - \rightarrow 6 sectors
 - \rightarrow Triangular shape
 - → Big acceptance and radiative effects



Simulations

- SIDIS simulations in CLAS12
 - ightarrow Simulate the particles through CLAS12 with Pythia event generator and GEMC CLAS simulation
 - → Extract the data from the generated and the reconstructed particles
- Fit the pion spectrum with the form $A + Bcos(\phi) + Ccos(2\phi)$
- Extract the $cos(\phi)$ and $cos(2\phi)$ asymmetries and conclude on the Boer-Mulders function

Simulation: kinematic variables



$$z=\frac{E_{\pi}}{\nu}$$

$$x_B = \frac{Q^2}{2.p.q}$$

Preliminary Results

Preliminary results

∧ Not really physical results

Need of acceptance correction

 $cos(\phi)$ and $cos(2\phi)$ asymmetries in function of the different kinematic variables

Results and simulation

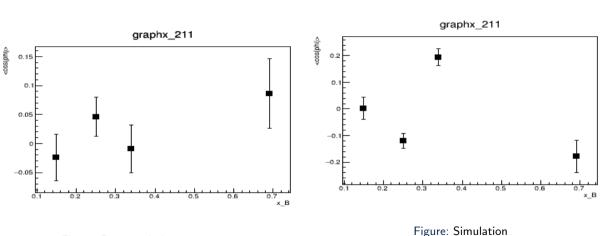
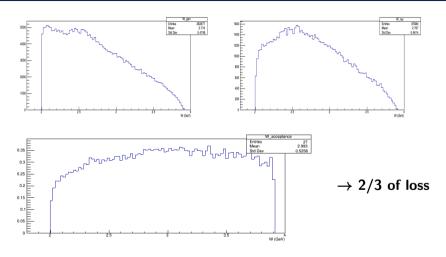



Figure: Data analysis

Simulation without ϕ modulations show large asymmetries du to the detector geometry

Results : Acceptance

W: invariant mass of hadronic final state

Summary

- What was done
 - \rightarrow extraction of the kinematic variables
 - \rightarrow extraction of the asymmetries from the data
 - ightarrow analysis of SIDIS simulations and extraction of reconstructed and generated data
 - \rightarrow First step of acceptance correction
- Next steps
 - \rightarrow Extract the acceptance from all the multidimensional bins
 - \rightarrow Apply to the data
 - \rightarrow Radiative correction
 - \rightarrow Systematic error evaluation

Thank You