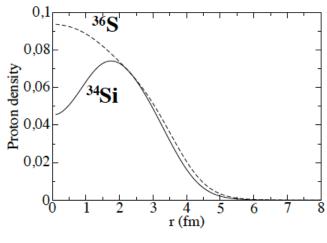
Soft monopoles and bubble excitations in ³⁴Si, ³⁶S and ²⁸Si

A bit of history

Soft breathing modes excitations

Bubble structure excitations

From bubble stucture to soft modes in ³⁴Si - a bit of history


Original goal:

Study the density dependence of the SO interaction

- -> Find a nucleus with abnormal density ... most have a constant density with a decrease at the surface
- -> 34Si was ideal in 'classical shell model picture'

Central depletion of ³⁴Si first predicted by *M. Grasso et al. PRC 79 (2009)*

- -> comes from the lack of proton in $s_{1/2}$ orbital (L=0)
- E. Khan proposed the name of 'bubble' nucleus

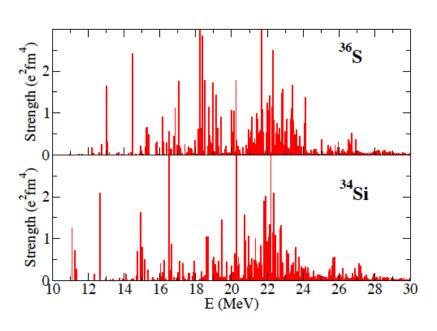
This central density depletion induces a strong reduction of the SO splitting for L=1 orbitals probing the nuclear center *G. Burgunder et al. PRL 112 (2014),* T. *Duquet at al. PRC 95 (2017)*

The depletion of the $s_{1/2}$ orbital ³⁴Si has been inferred by comparing ³⁶S(-1p) and ³⁴Si(-1p) KO reactions cross sections for L=0 states *A. Mutschler et al. Nature Phys. 13 (2017)*

I was expecting that ³⁴Si could be more 'easily' be compressed and would have soft a breathing mode.

- -> Calculations indeed find soft modes, but their nature is not based on proton excitations!
- D. Gambacurta, M. Grasso, O. Sorlin PRC 100 (2019)

The next chapters of this history will hopefully bring other interesting discoveries ...

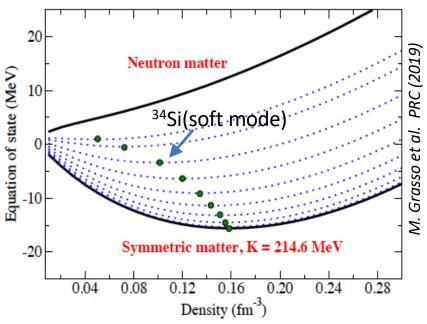

Soft monopoles and bubble excitations

A bit of history

Soft breathing modes excitations

Bubble structure excitations

Soft modes in the N=20 nuclei ³⁴Si and ³⁶S


Almost pure neutron oscillations

$$X = \frac{X_N - X_P}{X_N + X_P}.$$

$$E(X) \sim 5.22A^{-1/3}\sqrt{K_X},$$

³⁴Si: K_X = 45.5 MeV, E(X) = 11MeV, X=0.73 ³⁶S: K_X = 68 MeV, E(X) = 13 MeV

-> Such low-energy modes might have some connection with pure neutron matter oscillations

Experimental /theoretical procedure

EXPERIMENTAL STRATEGY:

1- Search if soft E0 modes exist in the 11-13 MeV region using suitable reaction(s) to produce them

As they are predicted to represent a 4-5 %of the GMR sum rule -> high-intensity /efficiency needed

- -> Inverse kinematics (34Si) in an active target (see talk Marine with 68Ni)
- -> or Direct kinematics (36S) in zero degree spectrometer
- (2- Measure the full E0 strength in 36 S. can be compared to that of 32 S -> dependance of K with A/Z)
- 3- Estimate the fraction of the sum rule of these low-energy modes.
- 4- Quantify their neutron component
- -> Use the comparison between their (p,p') and (α,α') cross sections

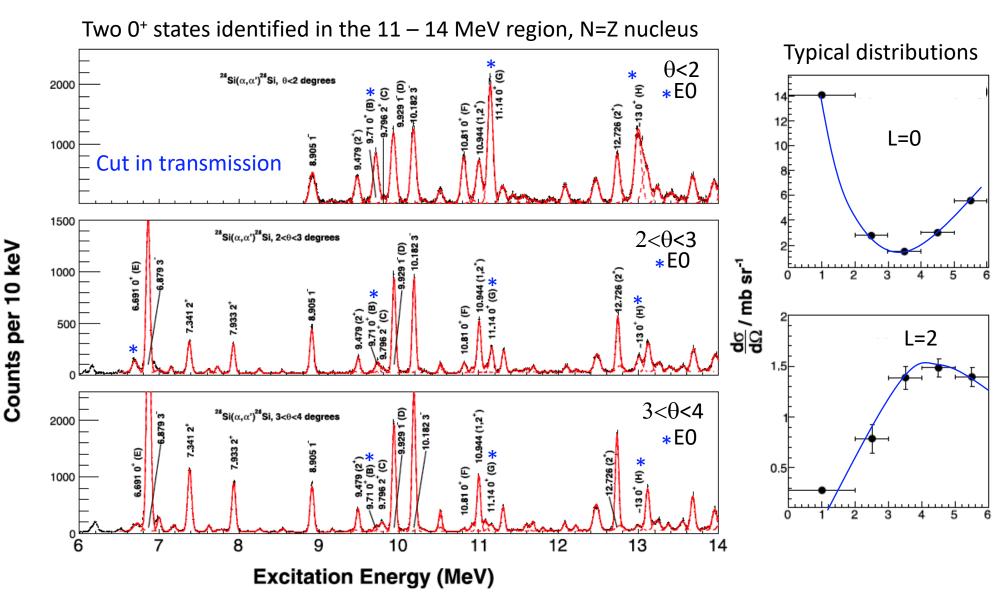
Hyp: (p,p') reaction more sensitive to neutron excitations while (α,α') is sensitive to both (IS modes).

NEEDS FROM THEORY:

- -> (p,p') and (α,α') inelastic scattering calculations and angular distributions using the calculated w.f. of the soft breathing modes
- -> Determine the sensitivity of the different probes, from their relative cross sections
- -> What is the best suited beam energy?
- -> Is their any information to extract from the pattern of their angular distribution?

Study of monopole excitation in direct kinematics @ Ithemba-Labs

A 99.6% pure ³⁶S has been produced and already used during a week

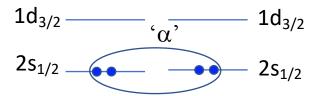


beam

≈ 30 keV resolution for 200 MeV (p,p') reaction, angular resolution about 0.4 degrees

K600 @ Ithemba-Labs

Typical results 28 Si(α , α') 28 Si @ 200 MeV (Ithemba-Labs)

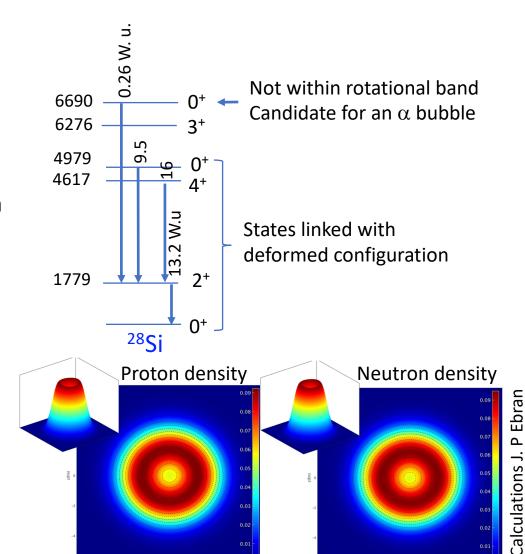

In general no need to make detailed Multiple Decomposition Analysis in this energy range

A bit of history

Soft breathing modes excitations

Bubble structure excitations

Search of an ' α '-bubble in ²⁸Si (relative to ³²S)

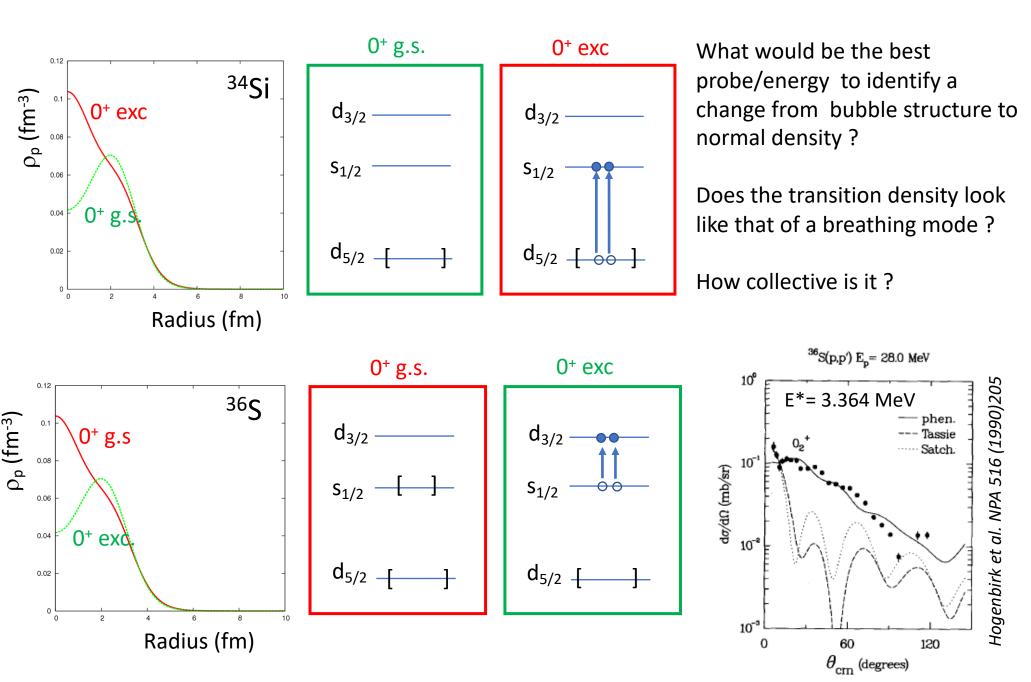


$$\begin{array}{c|c} 1d_{5/2} & \hline \\ \pi & \nu \\ & ^{32}S \end{array}$$

Why is the oblate shape energetically preferred to a spherical ' α ' bubble structure in ²⁸Si ?

Does it exist or is it mixed with other 0⁺ states ? If yes, at which energy ?

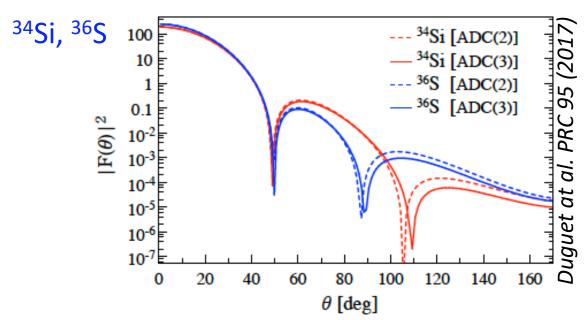
Predictions J.P Ebran 0^{+}_{1} , E = 0, β_{2} = -0.14 oblate 0^{+}_{2} , E = 4.11 MeV, β_{2} = +0.22 (prolate) 0^{+}_{3} , E = 5.05 MeV, β_{2} = 0.036 (-> spherical)



Strategies to reveal	an 'α'	bubble	state in ²⁸ S	i with	hadronic p	robes
<u> </u>						

Are inelastic scattering studies sensitive enough to prove the existence of such an ' α ' bubble structure ?

Does the ³²S(d,⁶Li)²⁸Si reaction favors the 0⁺₃ feeding as compared to other 0⁺ states?


Study of 'bubble' structure through inelastic scattering (hadronic probe)?

Bubble structure studies with electrons

Future experimental projects using electron beam colliders Electrons can better probe the interior of a nucleus

A high luminosity is needed to observe the second minimum....

²⁸Si

What is the inelastic charge form factor to the ' α ' bubble state in ²⁸Si ? Is its shape of the inelastic form factor reflecting its specific structure ?

Thank you

Anyone is welcome to discuss / help / participate in one of these projects