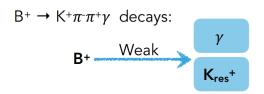
Steps towards $B \to K\pi\pi\gamma$ through $B^0 \to K^+\pi^-\gamma$ mode using monte-carlo data

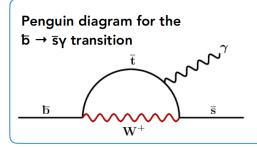
Borys Knysh

Laboratoire de l'accélérateur linéaire

October 3, 2019

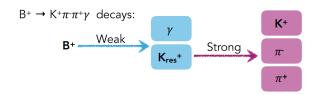
Outline

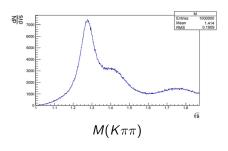

- **①** Motivation for the $B o K\pi\pi\gamma$ analysis;
- 2 Training with $B^0 o K^+\pi^-\gamma$ analysis;
- Conclusions


Photon polarisation in radiative B-hadron decays

- The $b \to s \gamma$ transition occurs through a penguin loop;
- Radiative b-hadron decays are sensitive to NP but need observables that are independent from form factors, for example photon polarisation parameter

Why are $B \to K\pi\pi\gamma$ decays sensitive to the photon polarisation?

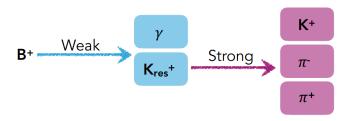




In the SM, the photon is mostly right-handed

In case of new physics, a significant fraction of lefthanded photons could be produced

Why are $B \to K\pi\pi\gamma$ decays sensitive to the photon polarisation?



Many kaonic resonances involved:

- Interferences give access to the photon polarisation parameter;
- Complexity of analysis

Decay rate as function of photon polarisation parameter

Differential decay rate for B⁺ \rightarrow K⁺ π - π ⁺ γ decays:

$$\frac{d\Gamma(B^{+} \to K^{+}\pi^{-}\pi^{+}\gamma)}{ds} = |\sum_{i} c_{R}^{i} B^{i}(s) A_{R}^{i}|^{2} + |\sum_{i} c_{L}^{i} B^{i}(s) A_{L}^{i}|^{2}$$

Weak decay amplitude for $B^+ \rightarrow K_{res}^+ +_R \gamma_R$

Propagator for the K_{res}+

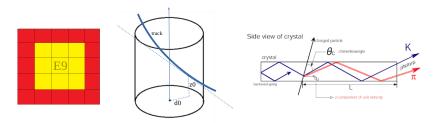
Strong decay amplitude for $K_{res}^{+}_{R} \rightarrow K^{+}\pi^{-}\pi^{+}$

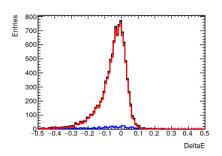
4□▶ 4₫▶ 4½▶ 4½▶ ½ 90

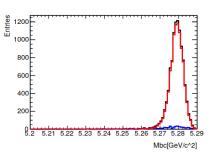
 $B^0 \to K^+\pi^-\gamma$ decay as control mode

7/21

Monte-Carlo data


Initial data consists of:


- Training sample consisting of equal amount of:
 - **1** Signal $B^0 \to K^+\pi^-\gamma$ events;
 - ② Background part of generic monte-carlo: $B^+B^-, B^0\bar{B}^0, q\bar{q}, \tau^+\tau^-$
- ullet Validation sample: generic monte-carlo consisting of 100 fb^{-1}


According to estimations 100 fb^{-1} of generic data contains:

$$N_{sig} = 2 \cdot \sigma_{\Upsilon(4S)} \cdot L \cdot Br_{B^0\bar{B}^0} \cdot Br_{B^0 \to K^{*0}(K^+\pi^-)\gamma} = 3093$$
 of $B^0 \to K^{0*}\gamma$ events.

Preselection cuts

Preselection cuts

Table: Preselection cuts

$$\gamma$$
: clusterE9E25 > 0.95;
1.8 < $E_{\gamma CM}$ < 3.4 GeV

$$p(\chi^2) > 0.001$$
; $PID > 0.1$; $|d_0| < 0.5$; $|z0| < 5$; $p > 0.1$ GeV :

$$5.29 > M_{bc} > 5.2$$
 GeV and $-0.2 < \Delta E < 0.1$

$$0.817 < M_{K\pi} < 0.967$$

 $pdf_{\pi^0} \ge 0$ and $pdf_{\eta} \ge 0$;
best candidate selection:

10 / 21

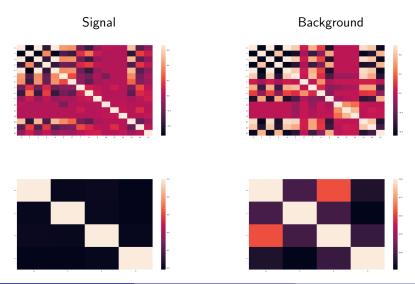
Preselection cuts: Result

After applying above mentioned cuts there are:

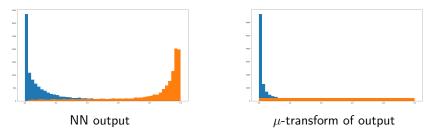
- 988 $B^0 \to K^{0*} \gamma$ events, which corresponds to $\epsilon = 31.9\%$ of signal efficiency;
- 57873 of background events, which corresponds to 99.99 % of background reduction;

Removing non-discriminating variables

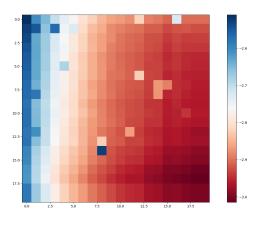
while $(\max_f(DATA.correlation) < threshold)$:



◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○


Correlation matrices reduction

Results of reduction of discriminating variables number from 16 to 5, with decresing correlation to 55 % and decreasing accuracy on nearly 1 %.


Neural net output

 $\mu(y) = \int_0^y y' dy' / \int_0^1 y' dy'$, where y' — coming form distribution, which need to be flatted.

Cutting on μ NN > 0.5 allows to keep 50 % of signal events (495 events) while suppressing 98.77 % of background events.

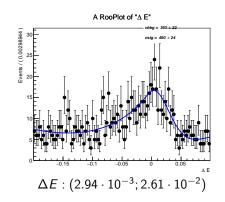
Optimizing cuts on π^0, η probabilities

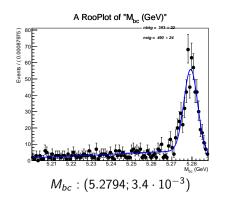
15 / 21

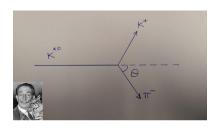
 $\sigma_{ extit{sig}}/ extit{N}_{ extit{sig}} = f(P_{\pi^0}, P_{\eta})$

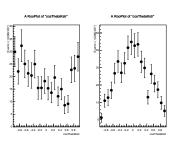
 $P_{\pi^0}^{min}=0.95; P_{\eta}^{min}=1.$ SIgnal efficiency 96.6 %, background suppression 43 %.

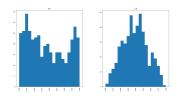
Borys Knysh (LAL) French-Ukrainian workshop October 3, 2019


Efficiencies summary table

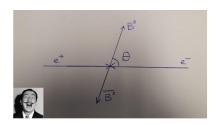

	preselection	NN cut	π^0, η probs.	total	N_{evt}
S	31.9 %	50 %	96.6 %	15.4 %	478
В	0.01 %	1.23 %	57 %	$7 \cdot 10^{-5} \%$	405

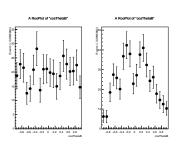

Extended likelihood fit

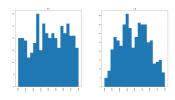

- Two dimensional data corresponds to M_{bc} and ΔE ;
- Model parameters come within the following models: gaussian argus and crystal ball, first order polynomial;. N_{sig} and N_{bgr} are from Poisson distribution:



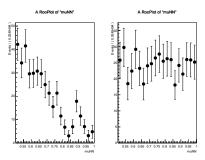
$_sPlot: \cos\theta_{\pi^-;K^{*0}}$




Reconstructed


Truth

$_sPlot: \cos\theta_{B;e^+e^-}$



Reconstructed

Truth

$_sPlot: \mu NN$

Truth

Reconstructed

20 / 21

Conclusions

In the current work

- Given motivation of studying $B \to K\pi\pi\gamma$ channel;
- Training steps for $B^0 o K^+\pi^-\gamma$ channel was made;
- Preselection cuts are applied;
- Optimization technique has been implemented;
- Efficiencies estimation has been done;
- Full likelihood fit and sPlot of monte-carlo data is performed.