

# The Hydrogen Intensity and Real-time Analysis eXperiment

21cm Cosmology Workshop 2019 - 22/10/2019 Devin Crichton - SARAO Postdoctoral Fellow @ UKZN























































UNIVERSITY OF KWAZULU-NATAL

INYUVESI YAKWAZULU-NATALI

UNIVERSITÉ DE GENÈVE

Science & technology
Department:
Science and Technology
REPUBLIC OF SOUTH AFRICA

**ETH** zürich

#### **HIRAX** Overview



- Hydrogen Intensity and Real-time Analysis experiment
- Target: 1024 6m dishes (29,000 m²) evenly spaced → Redundant baselines
- To be co-located with the SKA in the Karoo (Low RFI, Southern Surveys)
- Dual Polarisation feeds operating at 400–800 MHz (21 cm at z = 0.8–2.5)
- Survey area of 15,000 deg<sup>2</sup> over 4 years (repointed every few months)
- Primary Goals:
  - Measure BAOs across ~4 Gyr, spanning onset of Dark Energy dominated expansion
  - Efficiently map the transient radio sky



## HIRAX Status Updates



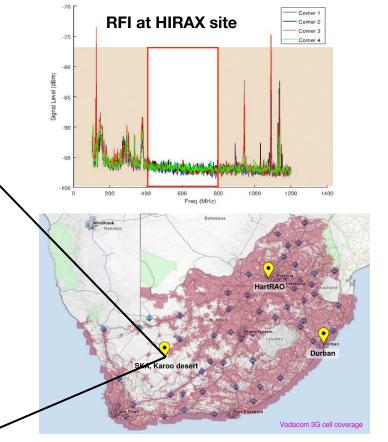
#### 2018

- Signed site agreement / MoA with SARAO (SKA South Africa)
- Secured funding for correlator up to 256 dishes through SNSF

#### 2019

- Secured funding for 256 dishes through South African National Research Foundation (NRF) → Fully funded project budget up to 256 elements
- Deployed prototype custom f/D=0.25 dishes at HartRAO
- Aim to start public tender process for dishes

#### 2020


- Finalise site development plan
- Start building at Karoo site
- Actively pursuing funding up to 1024 elements

#### HIRAX Site



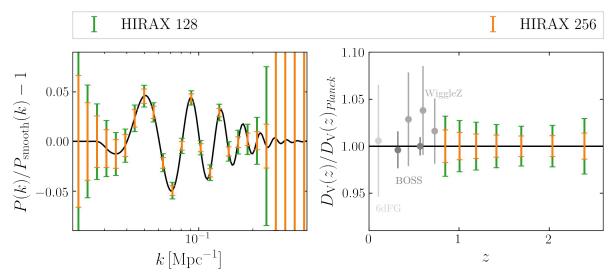
- On SARAO managed Karoo site
- Low RFI site protected by government regulations

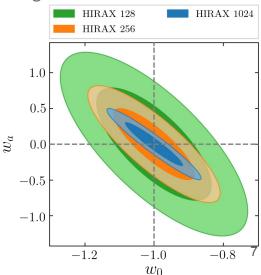
 Close to road for access, power and external network connection



## Cosmology Forecasts with HIRAX

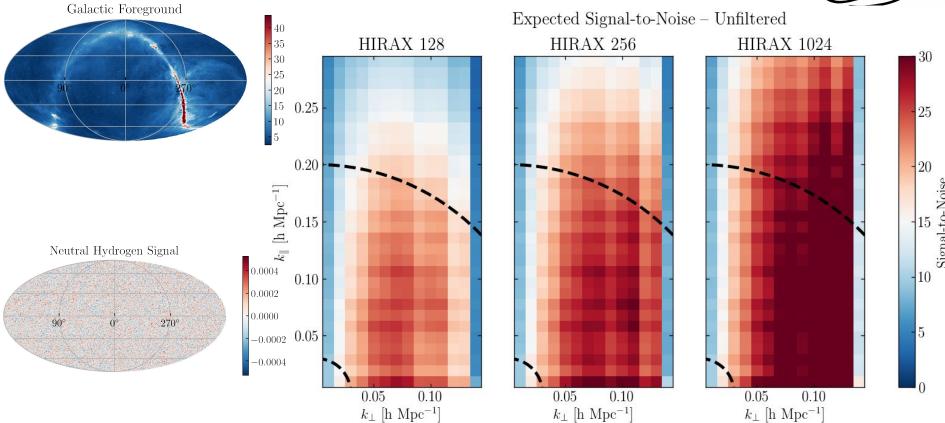



To determine HIRAX's ability to constrain cosmological parameters we make use of a Fisher matrix formalism


- Based on analysis of Bull et al. 2015
- Currently cosmological constraints assume simplistic treatment of instrument noise and systematics
- Foregrounds are assumed to be subtracted to a residual smooth component of the noise reduced by 10<sup>-6</sup> Instrument specification from Newburgh et al 2016 in amplitude
- 15,000 deg<sup>2</sup>, 4 yr survey, 50% efficiency

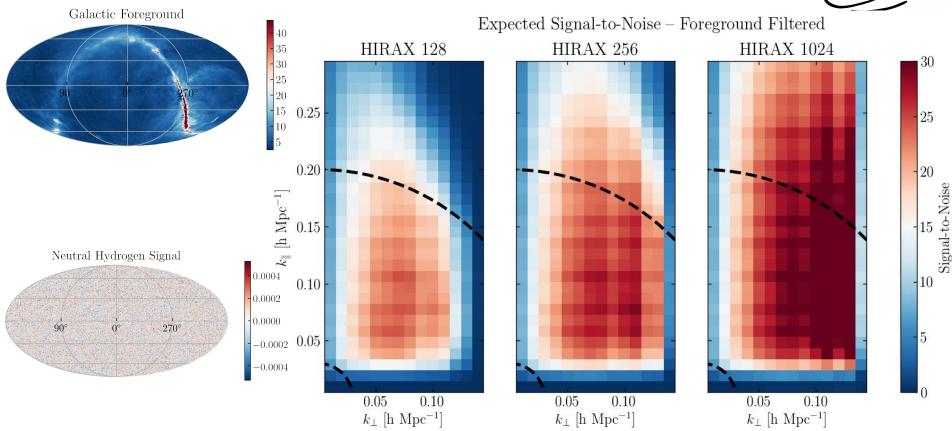
| Frequency Range        | $400-800\mathrm{MHz}$                              |
|------------------------|----------------------------------------------------|
| Frequency Resolution   | $390\mathrm{kHz},1024\;\mathrm{channels}$          |
| Dish size              | $6\mathrm{m}$ diameter, $f/D{=}0.25$               |
| Interferometric layout | $32 \times 32$ square grid, $7 \mathrm{m}$ spacing |
| Field of View          | $15~\rm deg^2 – 56~\rm deg^2$                      |
| Resolution             | ~5'-10'                                            |
| Beam Crossing Time     | 17–32 minutes                                      |
| System Temperature     | 50 K                                               |

## Forecasts: 21cm Cosmology


- HIRAX will measure the expansion rate over an as yet under-studied epoch in the universe's history
- HIRAX 128 aims to provide a detection of the BAO feature in the 21cm power spectrum
  - Additional constraints and boosted detection will come from cross-correlation studies
  - Won't provide significant boost to current dark energy constraints
- **HIRAX 256** has the potential to provide constraints on the dark energy equation of state competitive with other measurements, over a different epoch and with different systematics
- HIRAX 1024 will provide state-of-the-art constraints and potential for probing non-linear scales



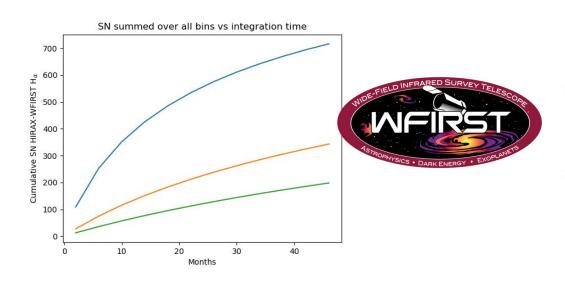


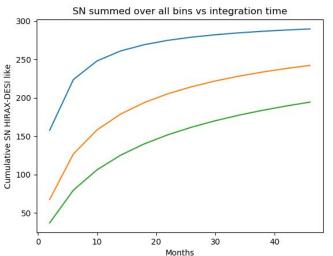

## Extending PS Forecasts to Full Sim. - m-mode





\*Core baselines only, 550-650 MHz (1/4 full bandwidth), ~6000 deg<sup>2</sup>, artificial high resolution cut


## Extending PS Forecasts to Full Sim. - m-mode




<sup>\*</sup>Core baselines only, 550-650 MHz (1/4 full bandwidth), ~6000 deg<sup>2</sup>, artificial high resolution cut

## Forecasts: Cross-correlations

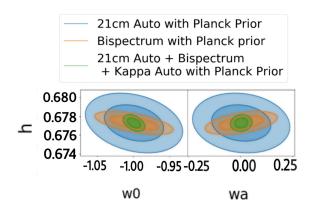


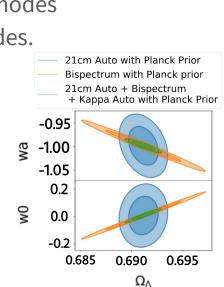


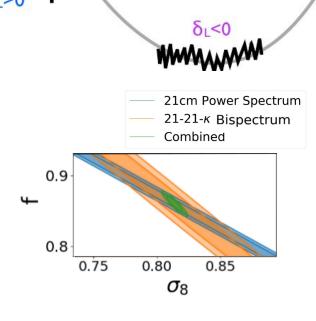


- Anticipated 21cm detection is high assuming naive scaling of noise with integration time
- Cross-correlation studies offer detection opportunities with reduced systematics and different cosmological parameter dependence



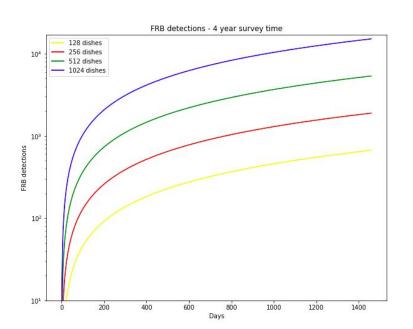

## Forecasts: 21cm x CMB Lensing

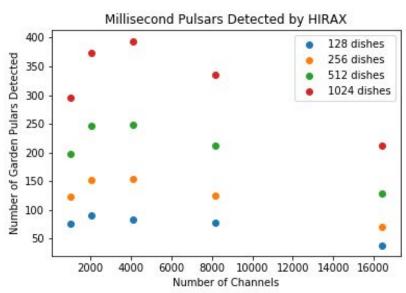




Direct 21 cm x CMB lensing signal vanishes due to 21 cm foreground in long wavelength LoS modes. Need to use higher order correlations

 Use Bispectrum: Low-k lensing modes cross with two high-k 21 cm modes.

Moodley et al. in prep



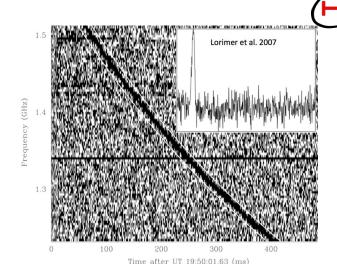



## **Forecasts: Transient Searches**



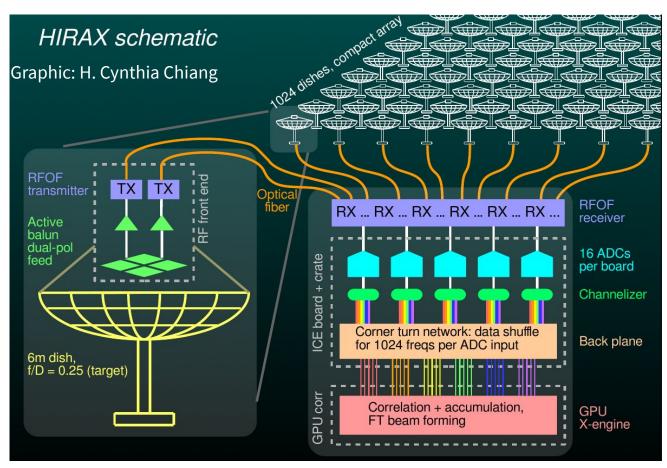





At all scales, HIRAX will provide a sophisticated platform for pulsar and FRB searches, greatly adding to southern sky detection rates.


- Detection rates scale approximately with collecting area, and therefore number of dishes
- At 256 elements, HIRAX will have a similar collecting area to CHIME

## Radio Transients: FRBs


- Flexible beamforming backend for transient searches
- Fast Radio Burst Search and Localization
- Aim to extend HIRAX to potential outrigger stations throughout Southern Africa to aid in localization







#### **Instrument Overview**

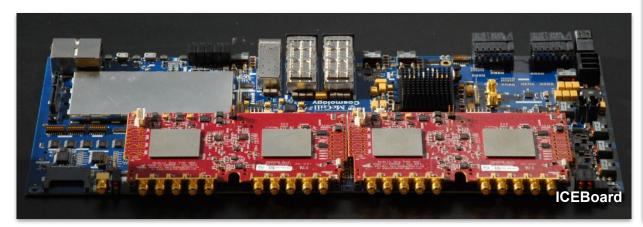













## **Instrument Overview**

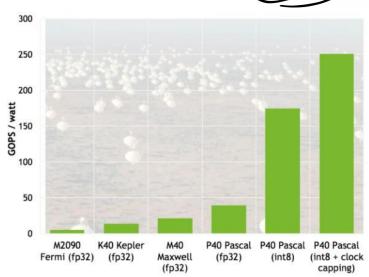
# HIRAX

#### Backend:

- ICE based CHIME F-Engine design
- Modernised CHIME-like X-Engine






## Current work: Correlator



- Using consumer hardware based correlator
  - o Developed by ETH-Zurich & U of Toronto
- HIRAX will require ~6.7 Peta OPS for correlation
- ~A few dozen modern GPUs for compute, ends up being I/O limited

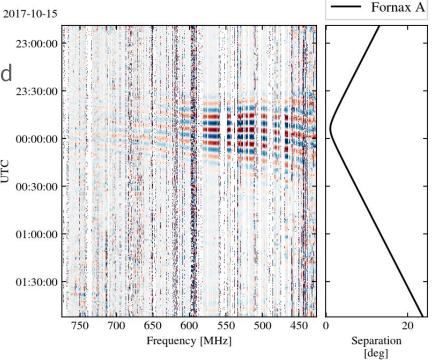
PCIe v4.0 will double currently available bandwidth to consumer GPUs.

- Nominal solution: 2 ICEBoards (16 dishes) per node
- With PCIe v4.0, could potentially achieve 3-4
   ICEBoards (24-32 dishes) per node
  - o Potentially: ~ 32 node system for HIRAX-1024 if possible



Modern GPU advances, specifically in mixed-precision operations greatly help with this.

# Current Work: Hardware Prototyping at HartRAO



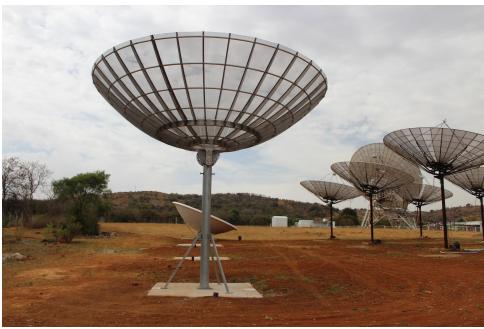

 Fully functional scaled-down digital backend with GPU correlator at prototype site

Informing hardware design and analysis

 Instrumented with multiple versions of feed and RF hardware






# **Current Work: Dish Prototyping**



Custom, locally produced prototype f/D=0.25 dishes have been developed and deployed at HartRAO

- Fiberglass dish: MMS
- Aluminium dish: Rebcon



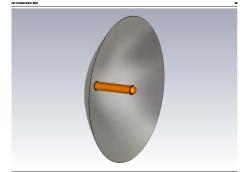


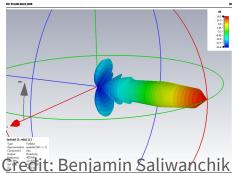
# **Current Work: Dish Prototyping**



#### Testing dish verification procedures

- Photogrammetry
  - Propagating photogrammetric measurements to far-field beams
- Holography
  - Exploring using the nearby 15m XDM telescope for holographic beam measurements

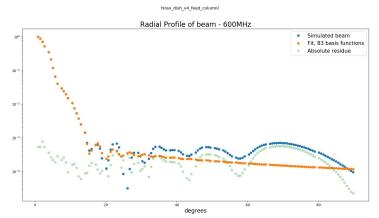


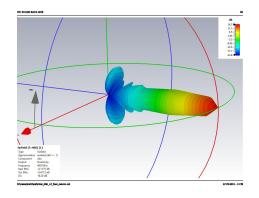


## **Current Work: Beam Systematics**



- Exploring drone beam calibration
  - Testing various kinds of drones
  - Will start testing at HartRAO site soon
  - Need to determine feasibility at Karoo site
- Developing EM simulated beams
  - Comparing with beam measurements
  - Testing effects component level positioning
  - Incorporating periodic boundary conditions to test for array effects






# **Current Work: Systematics Analysis**



- Incorporating systematics into analysis pipeline
  - Propagate to power spectrum constraints
  - Refine requirements for dish tender
  - Experimenting with beam decompositions to efficiently capture beam systematics
- Exploring array layout configuration effects on sensitivity, calibration and redundancy
- Testing dish validation procedures and comparing results to simulations and adding to simulations
- Simulating analysis pipeline
  - Including realistic surveys
  - Calibration with CorrCal
  - Flagging etc.





# Summary

- HIRAX
- HIRAX aims to make competitive Cosmological constraints and act as a sophisticated transient detection platform
- Current focus is in dish prototyping and in understanding systematic effects using prototypes. Feeding this into dish specification
  - Testing dish validation/verification procedures at HartRAO
- HIRAX is funded up to 256 dishes and will begin construction at the Karoo site in 2020

Thank you

